Quadrotor Path Following and Reactive Obstacle Avoidance with Deep Reinforcement Learning

نویسندگان

چکیده

Abstract A deep reinforcement learning approach for solving the quadrotor path following and obstacle avoidance problem is proposed in this paper. The solved with two agents: one task another task. novel structure proposed, where action computed by agent becomes state of agent. Compared to traditional approaches, method allows interpret training process outcomes, faster can be safely trained on real quadrotor. Both agents implement Deep Deterministic Policy Gradient algorithm. was developed a previous work. uses information provided low-cost LIDAR detect obstacles around vehicle. Since has narrow field-of-view, an providing memory previously seen developed. detailed description defining vector, reward function given. are programmed python/tensorflow tested RotorS/gazebo platform. Simulations results prove validity approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning for Robot Obstacle Avoidance and Wall Following

Reinforcement learning approach is learning how to map environment situations to actions, to maximize a reward signal. In this project, the SARSA(l) algorithm is applied to teach a robot to follow a wall and avoid running into obstacles. The robot is equipped with a laser scanner and odometry to perform the learning. The robot senses environment situation from the laser readings and decides whi...

متن کامل

Obstacle Avoidance through Reinforcement Learning

A method is described for generating plan-like, reflexive, obstacle avoidance behaviour in a mobile robot. The experiments reported here use a simulated vehicle with a primitive range sensor. Avoidance behaviour is encoded as a set of continuous functions of the perceptual input space. These functions are stored using CMACs and trained by a variant of Barto and Sutton's adaptive critic algorith...

متن کامل

Towards Monocular Vision based Obstacle Avoidance through Deep Reinforcement Learning

Obstacle avoidance is a fundamental requirement for autonomous robots which operate in, and interact with, the real world. When perception is limited to monocular vision avoiding collision becomes significantly more challenging due to the lack of 3D information. Conventional path planners for obstacle avoidance require tuning a number of parameters and do not have the ability to directly benefi...

متن کامل

Autonomous Quadrotor Landing using Deep Reinforcement Learning

Landing an unmanned aerial vehicle (UAV) on a ground marker is an open problem despite the effort of the research community. Previous attempts mostly focused on the analysis of hand-crafted geometric features and the use of external sensors in order to allow the vehicle to approach the land-pad. In this article, we propose a method based on deep reinforcement learning that only requires low-res...

متن کامل

Dynamic Obstacle Avoidance with PEARL: PrEference Appraisal Reinforcement Learning

Manual derivation of optimal robot motions for task completion is difficult, especially when a robot is required to balance its actions between opposing preferences. One solution has been to automatically learn near optimal motions with Reinforcement Learning (RL). This has been successful for several tasks including swing-free UAV flight, table tennis, and autonomous driving. However, high-dim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Intelligent and Robotic Systems

سال: 2021

ISSN: ['1573-0409', '0921-0296']

DOI: https://doi.org/10.1007/s10846-021-01491-2